Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.187$
$S=1.175$
4764 reflections
264 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1279 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.924 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.865 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0054 (13)

Scattering factors from International Tables for Crystallography (Vol. C)

Molecular Structure Corporation (1995). TEXSAN. Single Crystal Structure Analysis Software. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Rigaku Corporation (1995). RigakulAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1997). PLATON. Molecular Geometry and Plotting Program. Version of November 1997. University of Utrecht, The Netherlands.
Tolman, C. A. (1977). Chem. Rev. 77, 313-348.

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

Rh-P	2.1690 (11)	$\mathrm{Ol}-\mathrm{Cl}$	1.270 (5)
$\mathrm{Rh}-\mathrm{OI}$	2.031 (3)	O2-C9	1.281 (6)
$\mathrm{Rh}-\mathrm{O} 2$	2.059 (3)	O3-C16	1.139 (6)
$\mathrm{Rh}-\mathrm{Cl} 16$	1.803 (5)	$\mathrm{C} 1-\mathrm{C} 2$	1.496 (6)
$\mathrm{P}-\mathrm{O} 4$	1.587 (4)	C9-C10	1.492 (6)
$\mathrm{P}-\mathrm{O} 5$	1.588 (3)	C20-C21	1.544 (6)
P-06	1.582 (3)		
Ol -Rh-P	91.57(10)	$\mathrm{Cl} 16-\mathrm{Rh}-\mathrm{O} 2$	92.78 (19)
$\mathrm{O} 2-\mathrm{Rh}-\mathrm{P}$	176.07 (11)	O4-P-Rh	114.78 (14)
$\mathrm{O} 1-\mathrm{Rh}-\mathrm{O} 2$	88.06 (14)	$\mathrm{O}-\mathrm{P}-\mathrm{Rh}$	118.03 (13)
$\mathrm{Cl} 16-\mathrm{Rh}-\mathrm{P}$	87.75 (17)	$\mathrm{O} 6-\mathrm{P}-\mathrm{Rh}$	114.36 (13)
$\mathrm{Cl} 6-\mathrm{Rh}-\mathrm{Ol}$	177.4 (2)	O3-Cl6-Rh	179.4 (5)

H atoms were allowed for as riding atoms with $\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA$. The H atoms on the methyl C 21 atom were allowed to rotate but not tip around the $\mathrm{C} 20-\mathrm{C} 21$ bond. The largest positive maximum ($0.924 \mathrm{e}^{\AA^{-3}}$) in the final difference map was at $1.42 \AA$ from the Rh atom and the largest negative minimum $\left(-1.865 \mathrm{e}^{-3} \AA^{-3}\right)$ was at $0.73 \AA$ from the Rh atom.

Data collection: Rigaku/AFC Diffractometer Control Software (Rigaku Corporation, 1995). Cell refinement: Rigaku/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1995). Program(s) used to solve structure: SAPI91 (Fan, 1991). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 1997). Software used to prepare material for publication: TEXSAN and SHELXL97.

Financial assistance of the South African FRD and the Research Fund of the University of the Free State is gratefully acknowledged.

Supplementary data for this paper are available from the $I U C r$ electronic archives (Reference: FG1391). Services for accessing these data are described at the back of the journal.

References

Fan, H.-F. (1991). SAPI91. Structure Analysis Program with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
Heitsch, C. W. \& Verkade, J. G. (1962). Inorg. Chem. 1, 392-398.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lamprecht, D., Lamprecht, G. J., Botha, J. M., Umakoshi, K. \& Sasaki, Y. (1997). Acta Cryst. C53, 1403-1405.
Lamprecht, G. J., Leipoldt, J. G. \& van Biljon, C. P. (1984). Inorg. Chim. Acta, 88, 55-58.
Leipoldt, J. G., Basson, S. S., Bok, L. D. C. \& Gerber, T. I. A. (1978). Inorg. Chim. Acta, 26, L35-L37.

Iodo(1,10-phenanthroline- N, N^{\prime})(triphenylphosphine)copper(I)

Qiong-Hua Jin, ${ }^{a}$ Xiu-Lan Xin, ${ }^{b}$ Cheng-Jun Dong ${ }^{a}$ and Hui-Ju Zhu ${ }^{a}$
${ }^{a}$ Department of Chemistry, Capital Normal University, Beijing 100037, People's Republic of China, and ${ }^{b}$ Department of Chemical Engineering, Beijing Institute of Light Industry, Beijing 100037, People's Republic of China.
E-mail: liujm@sxx0.math.pku.edu.cn

(Received 4 November 1997; accepted 2 February 1998)

Abstract

In the title complex, $\left[\mathrm{CuI}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$, phenanthroline acts as a bidentate ligand coordinating via two N atoms to copper. The coordination polyhedron around the Cu atom is a distorted tetrahedron, with a $\mathrm{Cu}-\mathrm{P}$ distance of 2.1977 (9) $\AA, \mathrm{Cu}-\mathrm{N}$ distances of 2.111 (3) and 2.071 (3) \AA, and a $\mathrm{Cu}-\mathrm{I}$ distance of 2.6157 (6) A.

Comment

In the course of our work on the synthesis of $\mathrm{Mo}(\mathrm{W})-$ $\mathrm{Cu}-\mathrm{S}$ clusters containing large N -donor ligands, the title complex, (I), was prepared and used as one of the reactants.

(I)

The $\left[\mathrm{Cu}(\mathrm{phen})\left(\mathrm{PPh}_{3}\right)\right]^{+}$cation of the title complex (where phen is 1,10 -phenanthroline) can be regarded as being analogous to the $\left[\mathrm{Cu}(\mathrm{phen})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{2+}$ cation of $\left[\mathrm{Cu}(\right.$ phen $\left.)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{NO}_{3} .1 .5 \mathrm{EtOH}$, (II) (Kirchhoff et
al., 1985), and to the $\left[\mathrm{Cu}(\mathrm{phen})_{2}\right]^{+}$cations of $[\{\mathrm{Cu}-$ (phen) $\left.\left.)_{2}\right\}\left\{\mathrm{Cu}(\mathrm{OAc})_{2}\right\}(\mathrm{OAc})_{2} \mathrm{H}\right]$, (III) (Darensbourg et al., 1992), $\left[\mathrm{Cu}(\text { phen })_{2}\right] \mathrm{ClO}_{4}$, (IV), and $\left[\mathrm{Cu}(\text { phen })_{2}-\right.$ ($\left.\mathrm{CuBr}_{2}\right)$], (V) (Healy et al., 1985). Complex (I) can also be regarded as being analogous to the pentacoordinated complex $\alpha-\left[\mathrm{Cu}(\mathrm{phen})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{BH}_{4}\right)\right]$, (VI) (Green et al., 1984), with its bidentate BH_{4}^{-}ligand replaced by a monodentate iodine ligand. The X-ray structure analysis of (I) reveals a distorted tetrahedral coordination of the Cu atom, with the four vertices occupied by two N atoms from phen, one P atom from PPh_{3} and one I atom. Here phen acts as a bidentate ligand coordinating via two N atoms to the Cu atom. The $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ bond angle in complex (I) $\left[79.93(10)^{\circ}\right]$ is more acute than those in complexes (II)-(VI). The two $\mathrm{N}-\mathrm{Cu}-\mathrm{P}$ bond angles of (I) are $110.68(7)$ and $130.43(8)^{\circ}$, similar to the corresponding angles in (II) and (VI). The Cu P bond length $[2.1977$ (9) \AA A $]$ and the $\mathrm{Cu}-\mathrm{N}$ distances [2.071 (3) and 2.111 (3) \AA] in (I) are comparable to those in complexes (II)-(VI). The $\mathrm{Cu}-\mathrm{I}$ bond length is 2.6157 (6) A .

The phen ligands are packed in a parallel fashion with alternate interlayer separations of 3.56 and $6.85 \AA$. Pairs of phen ligands are related by crystallographic inversion centres.

Fig. 1. View of the title complex. Displacement ellipsoids are shown at the 30% probability level. H atoms are of arbitrary size.

Experimental

The title complex was prepared by reaction of $\mathrm{CuI}, \mathrm{PPh}_{3}$ and phen (molar ratio 1:2:2) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at room temperature. ${ }^{i} \mathrm{PrOH}$ was added on the superficial layer of the filtrate. Orange columnar prismatic crystals were obtained by slow evaporation of the solvent.

Crystal data
$\left[\mathrm{CuI}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$
$M_{r}=632.91$
Triclinic
$P \overline{1}$
$a=10.128$ (2) \AA
$b=10.599$ (2) A
$c=12.784(4) \AA$
$\alpha=86.75(2)^{\circ}$
$\beta=86.35(2)^{\circ}$
$\gamma=79.079(9)^{\circ}$
$V=1343.3(5) \AA^{3}$
$Z=2$
$D_{x}=1.565 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
2日/w scans
Absorption correction:
ψ scan (XEMP; Siemens,
1991)
$T_{\text {min }}=0.267, T_{\text {max }}=0.542$
5601 measured reflections
4718 independent reflections 4119 reflections with

$$
I>2 \sigma(I)
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.084$
$S=1.117$
4718 reflections
318 parameters
H atoms: see below
$w^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.059 P)^{2}\right.$
$+0.193 \mathrm{P}]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=-0.001$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 30 reflections
$\theta=5.48-14.80^{\circ}$
$\mu=2.042 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Column
$0.60 \times 0.55 \times 0.30 \mathrm{~mm}$ Orange
$R_{\text {int }}=0.012$
$\theta_{\text {max }}=26.01^{\circ}$
$h=-1 \rightarrow 11$
$k=-13 \rightarrow 12$
$I=-15 \rightarrow 15$
3 standard reflections every 97 reflections intensity decay: none

Table 1. Selected geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{I}-\mathrm{Cu}$	$2.6157(6)$	$\mathrm{Cu}-\mathrm{N} 1$	$2.111(3)$
$\mathrm{Cu}-\mathrm{N} 2$	$2.071(3)$	$\mathrm{Cu}-\mathrm{P}$	$2.1977(9)$
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 1$	$79.93(10)$	$\mathrm{N} 2-\mathrm{Cu}-\mathrm{I}$	$107.06(7)$
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{P}$	$130.43(8)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{I}$	$110.97(7)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{P}$	$110.68(7)$	$\mathrm{P}-\mathrm{Cu}-\mathrm{I}$	$112.70(3)$

All non-H atoms were refined anisotropically. H atoms were placed at calculated positions, with C-H distances of $0.93 \AA$, and were refined with a common isotropic displacement parameter [0.08 (3) \AA^{2}].

Data collection: XSCANS (Fait, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: XP (Siemens, 1994). Software used to prepare material for publication: SHELXL93.

We are very grateful for the support of the Beijing Science and Technology Commission of China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BMI209). Services for accessing these data are described at the back of the journal.

References

Darensbourg, D. J., Longridde, E. M., Atnip, E. V. \& Reibenspies, J. H. (1992). Inorg. Chem. 31, 3951-3955.

Fait, J. (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Green, B. E., Kennard, C. H. L., Smith, G., Elcombe, M. M., Moore, F. H., James, B. D. \& White, A. H. (1984). Inorg. Chim. Acta, 83, 177-189.
Healy, P. C., Engelhardt, L. M., Patrick, V. A. \& White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 2541-2545.

Kirchhoff, J. R., McMillin, D. R., Robinson, W. R., Powell, D. R., McKenzie, A. T. \& Chen, S. (1985). Inorg. Chem. 24, 3928-3933.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1991). XEMP. Empirical Absorption Correction Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994). XP. Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1998). C54, 1089-1091

Exopolyhedral Cyclized Platinaundecaboranes: $\left[\left(\mathbf{P P h}_{3}\right)(\mathbf{P h C O S}) \mathbf{P t B}_{10} \mathbf{H}_{11}\right] \cdot \mathbf{0 . 5} \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$

Chun-Hua Hu, ${ }^{a}$ Jian-Min Dou, ${ }^{a}$ Jie Sun, ${ }^{b}$ Hai-Jun Yao, ${ }^{c}$ Jing-De Wei, ${ }^{c}$ Ruo-Shui Jin ${ }^{c}$ and Pei-Ju Zheng ${ }^{a}$
${ }^{a}$ Research Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China,
${ }^{b}$ Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China, and ' Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China. E-mail: pjzheng@fudan. edu.cn

(Received 11 July 1997; accepied 17 February 1998)

Abstract

The asymmetric unit of the title compound 7,11or 7,8-(μ-thiobenzoato-S:O)-7-(triphenylphosphine- P)-8,9:10,11-di- $\mu \mathrm{H}$-7-platina-nido-undecaborane-dichloromethane (1/0.5), $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~B}_{10}$ OPPtS. $0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, contains two metallaborane molecules, which are approximate geometric isomers, and one molecule of dichloromethane solvent. Each isomer has an exopolyhedral
thiobenzoate ligand bridging one Pt and one B atom to give a five-membered $\mathrm{Pt}-\mathrm{S}-\mathrm{C}-\mathrm{O}-\mathrm{B}$ ring.

Comment

Metallaborane chemistry has expanded rapidly and several hundred polyhedral compounds have been synthesized and characterized. It is interesting that some clusters contain one or more five-membered ring(s) of exopolyhedral cyclization of metal ligand(s) to cluster. The best represented of these exopolyhedral cyclization processes is that of ortho-cycloboronation. This occurs with P-phenyl ligands on the metal centres and leads to five-membered $M-\mathrm{P}-\mathrm{C}-\mathrm{C}-\mathrm{B}$ rings (Crook et al., 1982; Bould et al., 1982, 1983, 1989, 1992, 1993; Elrington et al., 1986; Bould, Brint et al., 1990; Bould, Crook et al., 1990; Bould, Greenwood \& Kennedy, 1990; Dou, Hu, Li et al., 1997). Besides ortho-cycloboronation, it is possible to generate five-membered $M-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{B}$ rings using acetate (Fontaine et al., 1987) or benzoate (Yao et al., 1995), and M-S-C-$\mathrm{S}-\mathrm{B}$ rings using dithiocarbamate ligands (Beckett et al., 1985; Coldicott et al., 1996). Previously, we have prepared and characterized some 11 -vertex metallaboranes containing two or even three five-membered M -$\mathrm{S}-\mathrm{C}-\mathrm{O}-\mathrm{B}$ rings ($M=\mathrm{Ru}, \mathrm{Ni}$) using thiobenzoate (Yao et al., 1998; Dou, Hu, Yao et al., 1997; Hu et al., 1997; Dou, Hu, Sun et al., 1997). We now report an 11-vertex platinaundecaborane, (I), containing one thiobenzoate linkage.

(I)

The asymmetric unit includes two approximate geometric isomers, A and B, and one $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule (Fig. 1). Molecules A and B differ in the position of the thiobenzoate linkage, which bridges atoms $\mathrm{Pt} 7 A$ and $\mathrm{B} 11 A$, or alternatively atoms $\mathrm{Pt} 7 B$ and $\mathrm{B} 8 B$, respectively. Each molecule has an 11vertex nido- $\left\{\mathrm{PtB}_{10}\right\}$ cage, with the Pt atom as part of the open PtB_{4} face. Each Pt atom is bound to four B atoms, one PPh_{3} ligand and one S atom. The $\mathrm{Pt}-\mathrm{B}$ bond lengths of $2.18(3)-2.26(3) \AA$ are similar to the corresponding distances found in related compounds: 2.214 (5)-2.301 (6) \AA in $\left[7,7-\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2^{-}}\right.$ $\left.7-\mathrm{PtB}_{10} \mathrm{H}_{12}\right], 2.231(10)-2.325(11) \AA$ in $\left[4-\left(2^{\prime}-\mathrm{B}_{10} \mathrm{H}_{13}\right)\right.$ -7,7-($\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}-7-\mathrm{PtB}_{10} \mathrm{H}_{11}$] (Boocock et al., 1981) and $2.206(12)-2.342(13) \AA$ in [8-Cl-7,7-($\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}-7-$ $\mathrm{PtB}_{10} \mathrm{H}_{11}$] (Crook et al., 1984). The five-membered $\mathrm{Pt} 7 A-\mathrm{S} 1 A-\mathrm{C} 1 A-\mathrm{O} 1 A-\mathrm{B} 11 A$ ring of molecule A is more planar than the $\mathrm{Pt} 7 B-\mathrm{S} 1 B-\mathrm{ClB}-\mathrm{O} 1 B-\mathrm{B} 8 B$

